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This paper focus on construction of high-order energy-preserving difference scheme for the fourth-order 
nonlinear strain wave equation with an energy conservation law. This target model is firstly transformed into 
an equivalent system by using the method of trigonometric scalar auxiliary variables. The resulting equivalent 
system possess a modified energy conservation law, and a fourth-order difference scheme with analogously 
discrete energy conservation law is developed based on the resulting equivalent system. The boundedness and 
convergence of the numerical solutions in the maximum norm are shown. The effectiveness of the difference 
scheme is verified by several numerical experiments.

1. Introduction

Consider the numerical method for system of the nonlinear strain fourth-order wave equation as follows

𝑢𝑡𝑡 + 𝛾Δ2𝑢−Δ𝑢+ 𝑢3 = 0, 0 < 𝑡 ≤ 𝑇 , (1.1)

subject to the initial conditions

𝑢(𝑥,0) = 𝜑(𝑥), 𝑢𝑡(𝑥,0) = 𝜓(𝑥), (1.2)

where Δ is the Laplacian operator, 𝛾 is positive constant, 𝜑(𝑥) and 𝜓(𝑥) are given smooth functions on Ω, see e.g., [1,2]. When 𝛾 = 0, Eq. (1.1)

reduces to the cubic Klein-Gordon equation

𝑢𝑡𝑡 −Δ𝑢+ 𝑢3 = 0, (1.3)

which describes many phenomena in physic, such as superconductors and relativistic quantum mechanics, see e.g., [3,4]. In the elastic-plastic 
microstructure model studied by An and Peirce [5], the model (1.1)-(1.2) describes the elastic-plastic rod motion proposed by Avila in [6], which is 
used to analyze the influence of source term on the dynamics, forward and reverse of the undamped problem. Liu and Xu [7] proved that the global 
existence of solutions for initial boundary value problems with energy initial conditions. Shen et al. [1] proved that the solution blows up with any 
positive initial energy in a finite time.

In terms of numerical calculation, it is generally recognized that the structure-preserving algorithms are superior to other traditional methods, 
due to the former can retaining some inherent properties of a given system. In terms of this model (1.1), it has the following energy conservation 
law,

𝑑

𝑑𝑡
(‖𝑢𝑡‖2 + 𝛾‖Δ𝑢‖2 + ‖∇𝑢‖2 + 1

2
‖𝑢‖44) = 0, (1.4)

which can be obtained by taking inner product of Eq. (1.1) with 𝑢𝑡. Some structure-preserving algorithms have been proposed including the finite 
difference method, finite element method and others. For example, Achouri [8] proposed a conservative difference scheme for the 2D nonlinear 

* Corresponding author at: School of Mathematical Sciences and V.C. and V.R. Key Lab, Sichuan Normal University, Chengdu 610068, China.

E-mail address: maohuaran@163.comn (M. Ran).
https://doi.org/10.1016/j.camwa.2023.01.026

Received 15 May 2022; Received in revised form 21 November 2022; Accepted 19 January 2023

0898-1221/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2023.01.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2023.01.026&domain=pdf
mailto:maohuaran@163.comn
https://doi.org/10.1016/j.camwa.2023.01.026


Z. Tian, M. Ran and Y. Liu Computers and Mathematics with Applications 135 (2023) 124–133
fourth-order wave equation. Kadri [2] designed a linear conservative finite difference scheme for a fourth-order nonlinear strain wave equation. 
But it is regrettable that these work has only accuracy of second order. Recently, Yang et al. [9] proposed trigonometric scalar auxiliary variable 
(T-SAV) approach which is a new structure-preserving technology, and it has been proved to be efficient in constructing numerical schemes for a 
large number of gradient flows, while overcomes most of the disadvantages of SAV approach, see e.g., [10–14]. Given that, our goal is to develop 
and analyze the structure preserving difference scheme with higher-order accuracy by combining with the T-SAV approach.

The organizational structure of this paper is as follows. In Section 2, we transform the model (1.1)-(1.2) into an equivalent system by introducing 
triangular scalar auxiliary variable. In Section 3, we apply the second-order central difference in time and fourth-order approximation in space 
to discretize the equivalent system, and obtain a linear conservative difference scheme. In Section 4, the boundedness and convergence of the 
difference solutions are shown. In Section 5, several numerical examples are given to verify the theoretical results. Finally, a brief summary is 
placed in Section 6.

2. Equivalent system based on T-SAV approach

In this section, we use the T-SAV approach to transform the original fourth-order strain wave equation (1.1) into a new system satisfying the 
quadratic energy-conservation law. The resulting equivalent system provides an new platform for developing high-order linear structure-preserving 
scheme.

Let 𝐿𝑝(Ω) be space of measurable functions defined on Ω. The inner product and norm are defined as

(𝑢, 𝑣) = ∫
Ω

𝑢𝑣𝑑𝑥, ‖𝑢‖𝐿𝑝 = (∫
Ω

|𝑢|𝑝𝑑𝑥)1∕𝑝, 1 ≤ 𝑝 <∞.

According to the idea of T-SAV approach, we introduce an auxiliary variable as follows

𝑟(𝑡) = sin(𝐹 (𝑡)) + 𝛿, (2.1)

where 𝐹 (𝑡) = 1
2 ∫Ω 𝑢4𝑑𝑥, 𝛿 is a large enough positive constant to avoid singularity in the denominator of Eq. (2.4) and reduce the impact on 𝑢.

Taking the derivative of Eq. (2.1), we have

𝑑𝑟

𝑑𝑡
= cos(𝐹 (𝑡))𝐹 ′(𝑡) = 2cos(𝐹 (𝑡))∫

Ω

𝑢3𝑢𝑡𝑑𝑥. (2.2)

Noticing that sin2 𝐹 + cos2 𝐹 = 1, we obtain

1√
1 − (𝑟− 𝛿)2

𝑑𝑟

𝑑𝑡
= 2∫

Ω

𝑢3𝑢𝑡𝑑𝑥. (2.3)

That is,

𝑑

𝑑𝑡
(arcsin(𝑟− 𝛿)) = 2∫

Ω

𝑢3𝑢𝑡𝑑𝑥=
2𝑟

sin(𝐹 (𝑡)) + 𝛿 ∫
Ω

𝑢3𝑢𝑡𝑑𝑥. (2.4)

As a result, Eq. (1.1) can be rewritten equivalently as

𝑢𝑡𝑡 + 𝛾Δ2𝑢−Δ𝑢+ 𝑟

sin(𝐹 (𝑡)) + 𝛿
𝑢3 = 0, (2.5)

𝑑

𝑑𝑡
arcsin(𝑟− 𝛿) = ( 2𝑟𝑢3

sin(𝐹 (𝑡)) + 𝛿
, 𝑢𝑡). (2.6)

Theorem 2.1. The equivalent system (2.5)-(2.6) has a modified energy conservation law, that is

𝐸(𝑡) =𝐸(0), 0 ≤ 𝑡 ≤ 𝑇 , (2.7)

where

𝐸(𝑡) = ‖𝑢𝑡‖2 + 𝛾‖Δ𝑢‖2 + ‖∇𝑢‖2 + arcsin(𝑟− 𝛿). (2.8)

Proof. Taking inner product of equation (2.5) with 𝑢𝑡, we have

(𝑢𝑡𝑡, 𝑢𝑡) + (𝛾Δ2𝑢, 𝑢𝑡) − (Δ𝑢, 𝑢𝑡) + ( 𝑟

sin(𝐹 (𝑡)) + 𝛿
𝑢3, 𝑢𝑡) = 0. (2.9)

This together with (2.6) gives

1
2
𝑑

𝑑𝑡
[‖𝑢𝑡‖2 + 𝛾‖Δ𝑢‖2 + ‖∇𝑢‖2 + arcsin(𝑟− 𝛿)] = 0, (2.10)

i.e.,

𝑑

𝑑𝑡
𝐸(𝑡) = 0.

It means that this proof of Theorem 2.1 is completed. □
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3. High-order structure-preserving scheme

In this section, we aim to develop a high-order structure preserving difference scheme based on the above equivalent system (2.5)-(2.6). But 
before we do that, let’s introduce some necessary notations and lemmas.

3.1. Notations and lemmas

Considering the computational interval [𝑥𝐿, 𝑥𝑅] with periodic 𝐿, let the mesh size ℎ = 𝐿∕𝑀 . Denote the grid points as Ωℎ = {𝑥𝑖|𝑥𝑖 = 𝑥𝐿 + 𝑖ℎ, 𝑖 =
0, 1, ⋯ , 𝑀 −1}, and let 𝑈ℎ = {𝑢|𝑢 = (𝑢𝑖), 𝑥𝑖 ∈Ωℎ} be the space of grid function defined on Ωℎ, equipped with discrete inner product and norms defined 
as

(𝑢, 𝑣) = ℎ
𝑀∑
𝑖=1
𝑢𝑖𝑣𝑖, ‖𝑢‖ =√

(𝑢, 𝑢), ‖𝑢‖∞ = max
1≤𝑖≤𝑀 |𝑢𝑖|, ∀𝑢, 𝑣 ∈𝑈ℎ.

Also we define the following difference operators for simplicity:

𝑢
𝑛+ 1

2
𝑖

=
𝑢𝑛+1
𝑖

+ 𝑢𝑛
𝑖

2
, 𝑢𝑖

𝑛 =
𝑢𝑛+1
𝑖

+ 𝑢𝑛−1
𝑖

2
,

𝛿+
𝑡
𝑢𝑛
𝑖
=
𝑢𝑛+1
𝑖

− 𝑢𝑛
𝑖

𝜏
, 𝛿𝑡𝑢

𝑛
𝑖
=
𝑢𝑛+1
𝑖

− 𝑢𝑛−1
𝑖

2𝜏
, 𝛿2
𝑡
𝑢𝑛
𝑖
=
𝑢𝑛+1
𝑖

− 2𝑢𝑛
𝑖
+ 𝑢𝑛−1

𝑖

𝜏2
,

and

𝛿+
𝑥
𝑢𝑛
𝑖
=
𝑢𝑛
𝑖+1 − 𝑢

𝑛
𝑖

ℎ
, 𝛿−
𝑥
𝑢𝑛
𝑖
=
𝑢𝑛
𝑖
− 𝑢𝑛

𝑖−1
ℎ

, 𝛿𝑥̄𝑢
𝑛
𝑖
=
𝑢𝑛
𝑖+1 − 𝑢

𝑛
𝑖−1

2ℎ
,

and

𝛿2
𝑥
𝑢𝑛
𝑖
=
𝑢𝑛
𝑖+1 − 2𝑢𝑛

𝑖
+ 𝑢𝑛

𝑖−1

ℎ2
, 𝛿4
𝑥
𝑢𝑛
𝑖
= 𝛿2

𝑥
(𝛿2
𝑥
𝑢𝑛
𝑖
), 𝛿2

𝑥̄
𝑢𝑛
𝑖
=
𝑢𝑛
𝑖+2 − 2𝑢𝑛

𝑖
+ 𝑢𝑛

𝑖−2

4ℎ2
.

3.2. Derivation of structure-preserving difference scheme

Denote 𝑈𝑛
𝑖

and 𝑢𝑛
𝑖

be the exact solution and the numerical solution of the problem (1.1)-(1.2) at the point (𝑥𝑖, 𝑡𝑛), respectively, denote 𝑅𝑛 and 𝑟𝑛
be the exact solution and the numerical solution of 𝑟(𝑡) at the point 𝑡𝑛, respectively

Let 𝑣𝑛
𝑖
= 𝜕4𝑢
𝜕𝑥4

(𝑥𝑖, 𝑡𝑛). Using Taylor’s expansion, we get

𝛿4
𝑥
𝑢𝑛
𝑖
= 𝑣𝑛

𝑖
+ ℎ

2

6
(𝛿2
𝑥
𝑣𝑛
𝑖
− ℎ

2

12
𝜕4𝑣

𝜕𝑥4
(𝜁𝑖, 𝑡𝑛)) +(ℎ4) = (1 + ℎ

2

6
𝛿2
𝑥
)𝑣𝑛
𝑖
+(ℎ4),

where 𝜁𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖+1), see [15,16]. It means that we have

𝜕4𝑢

𝜕𝑥4
(𝑥𝑖, 𝑡𝑛) =−1𝛿4

𝑥
𝑢𝑛
𝑖
+(ℎ4), (3.1)

where the difference operator  =  + ℎ2

6 𝛿
2
𝑥

and  is the identity operator.

It is easy to verify that this matrix 𝐴 corresponding to the operator  is a symmetric positive definite one. So, we denote 𝐻 =𝐴−1 for brevity.

Lemma 3.1. ([17]) If 𝑢(𝑥) ∈ 𝐶6[𝑥𝑖−1, 𝑥𝑖+1], it holds that

− 𝑑
2𝑢

𝑑𝑥2
(𝑥𝑖) = −4

3
𝛿2
𝑥
𝑢𝑖 +

1
3
𝛿2
𝑥̄
𝑢𝑖 +(ℎ4).

Applying the second-order central difference in time, and (3.1) and Lemma 3.1 in space to the equivalent systems (2.5)-(2.6) yields that the 
fully-discrete scheme as follows

𝛿2
𝑡
𝑢𝑛 + 𝛾𝐻𝛿4

𝑥
𝑢̂𝑛 − 4

3
𝛿2
𝑥
𝑢̂𝑛 + 1

3
𝛿2
𝑥̄
𝑢̂𝑛 + 𝑏(𝑢𝑛)𝑟𝑛 = 0, (3.2)

𝛿+
𝑡
arcsin(𝑟𝑛 − 𝛿) = (2𝑏(𝑢𝑛)𝑟𝑛, 𝛿𝑡𝑢𝑛), (3.3)

where 𝑢𝑛 = [𝑢𝑛1, 𝑢
𝑛
2, ⋯ , 𝑢𝑛

𝑀
]𝑇 and

𝑏(𝑢𝑛) = (𝑢𝑛)3

sin(𝐹𝑛) + 𝛿
.

In order to implement the above three-level scheme (3.2)-(3.3), we need 𝑢0 and 𝑢1. Obviously, 𝑢0 is given by (1.2), but 𝑢1 need be determined.

According to the Taylor expansion, we have

(𝑈0)2𝑈
1
2 = (𝑈

1
2 − 𝜏

2
𝑈

1
2
𝑡
+ 𝜏

2

8
𝑈

1
2
𝑡𝑡
+(𝜏3))2𝑈 1

2 = (𝑈
1
2 )3 +(𝜏),

and

𝑈1 =𝑈0 + 𝜏𝑈0
𝑡
+ 𝜏

2

2
𝑈0
𝑡𝑡
+(𝜏3)

=𝑈0 + 𝜏𝑈0
𝑡
+ 𝜏

2
(𝑈

1
2
𝑡𝑡
− 𝜏 𝑈

1
2
𝑡𝑡𝑡
+(𝜏2)) +(𝜏3)
2 2
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=𝑈0 + 𝜏𝑈0
𝑡
+ 𝜏

2

2
𝑈

1
2
𝑡𝑡
+(𝜏3)

=𝑈0 + 𝜏𝑈0
𝑡
+ 1

2
𝜏2(−𝛾Δ2𝑈

1
2 + Δ𝑈

1
2 − (𝑈

1
2 )3) +(𝜏3)

=𝑈0 + 𝜏𝑈0
𝑡
− 1

2
𝜏2(𝛾Δ2𝑈

1
2 − Δ𝑈

1
2 + (𝑈0)2𝑈

1
2 ) +(𝜏3),

where Eq. (1.1) has been used. It means that 𝑢1 can be obtained from the following formula

𝑢1 = 𝑢0 + 𝜏𝜓 − 1
2
𝜏2(𝛾𝐻𝛿4

𝑥
𝑢
1
2 − 4

3
𝛿2
𝑥
𝑢
1
2 + 1

3
𝛿2
𝑥̄
𝑢
1
2 − (𝑢0)2𝑢

1
2 ).

That is,

𝛿𝑡𝑢
0 + 𝛾𝜏

2
𝐴−1𝛿4

𝑥
𝑢
1
2 − 2𝜏

3
𝛿2
𝑥
𝑢
1
2 + 𝜏

6
𝛿2
𝑥̄
𝑢
1
2 + 𝜏

2
(𝑢0)2𝑢

1
2 = 𝜓(𝑥). (3.4)

Given the above, we obtain the following difference scheme for solving the model problem (1.1)-(1.2) with periodic boundary conditions:

𝛿2
𝑡
𝑢𝑛 + 𝛾𝐻𝛿4

𝑥
𝑢̂𝑛 − 4

3
𝛿2
𝑥
𝑢̂𝑛 + 1

3
𝛿2
𝑥̄
𝑢̂𝑛 + 𝑏(𝑢𝑛)𝑟𝑛 = 0, (3.5)

𝛿+
𝑡
arcsin(𝑟𝑛 − 𝛿) = (2𝑏(𝑢𝑛)𝑟𝑛, 𝛿𝑡𝑢𝑛), (3.6)

𝛿+
𝑡
𝑢0 + 𝛾𝜏

2
𝐴−1𝛿4

𝑥
𝑢
1
2 − 2𝜏

3
𝛿2
𝑥
𝑢
1
2 + 𝜏

6
𝛿2
𝑥̄
𝑢
1
2 + 𝜏

2
(𝑢0)2𝑢

1
2 = 𝜓(𝑥), (3.7)

where 𝛿𝑡𝑢0 = 𝜓 , 𝑟0 = sin( 12 ∫Ω 𝜑(𝑥)4𝑑𝑥) + 𝛿.
3.3. Discrete conservation law

This section is devoted to study the conservation property of the difference scheme (3.5)-(3.7). But before we do that, let’s introduce some 
necessary lemmas which plays an important role.

Lemma 3.2. ([18]) For any two mesh functions 𝑤, 𝑣 ∈𝑈ℎ, and denote 𝐻 = 𝐵𝑇𝐵 by the Cholesky decomposition of 𝐻 defined in (3.1), then we have

(𝐻𝛿4
𝑥
𝑤,𝑣) = (𝐵𝛿2

𝑥
𝑤,𝐵𝛿2

𝑥
𝑣).

Lemma 3.3. ([19]) For any grid function 𝑢 ∈𝑈ℎ, we have

‖𝑢‖ ⩽ 𝐿√
6
‖𝛿+
𝑥
𝑢‖.

Lemma 3.4. ([20,17]) For any two mesh functions 𝑢, 𝑣 ∈𝑈ℎ, we have

(𝛿−
𝑥
𝑢, 𝑣) = −(𝑢, 𝛿+

𝑥
𝑣), (𝛿𝑥̄𝑢, 𝑣) = −(𝑢, 𝛿𝑥̄𝑣), (3.8)

and

(𝛿2
𝑥
𝑢, 𝑢) = −‖𝛿+

𝑥
𝑢‖2, (𝛿2

𝑥̄
𝑢, 𝑢) = −‖𝛿𝑥̄𝑢‖2, ‖𝛿𝑥̄𝑢‖2 ≤ ‖𝛿+

𝑥
𝑢‖2. (3.9)

Based on above lemmas, we can obtain the follows result.

Theorem 3.5. The difference scheme (3.5)-(3.7) satisfy the energy conservation law as follows

𝐸𝑛+1 =𝐸𝑛, 𝑛 = 0,1,⋯ ,𝑁 − 1,

where

𝐸𝑛+1 =‖𝛿+
𝑡
𝑢𝑛‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑢𝑛+1‖2 + ‖𝐵𝛿2

𝑥
𝑢𝑛‖2) + 2

3
(‖𝛿+

𝑥
𝑢𝑛+1‖2 + ‖𝛿+

𝑥
𝑢𝑛‖2) − 1

6
(‖𝛿𝑥̄𝑢𝑛+1‖2 + ‖𝛿𝑥̄𝑢𝑛‖2) + arcsin(𝑟𝑛+1 − 𝛿).

Proof. Taking the inner product of equation (3.5) with 𝛿𝑡𝑢𝑛, we get

(𝛿2
𝑡
𝑢𝑛, 𝛿𝑡𝑢

𝑛) + (𝛾𝐻𝛿4
𝑥
𝑢̂𝑛, 𝛿𝑡𝑢

𝑛) − 4
3
(𝛿2
𝑥
𝑢̂𝑛, 𝛿𝑡𝑢

𝑛) + 1
3
(𝛿2
𝑥̄
𝑢̂𝑛, 𝛿𝑡𝑢

𝑛) + (𝑏(𝑢𝑛)𝑟𝑛, 𝛿𝑡𝑢𝑛) = 0. (3.10)

Noticing that

(𝛿2
𝑡
𝑢𝑛, 𝛿𝑡𝑢

𝑛) = 1
2𝜏3

(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1, 𝑢𝑛+1 − 𝑢𝑛−1) = 1
2𝜏

(‖𝛿+
𝑡
𝑢𝑛‖2 − ‖𝛿+

𝑡
𝑢𝑛−1‖2), (3.11)

and

(𝐻𝛿4
𝑥
𝑢̂𝑛, 𝛿𝑡𝑢

𝑛) = 1
4𝜏

(𝐵𝛿2
𝑥
𝑢𝑛+1 +𝐵𝛿2

𝑥
𝑢𝑛−1,𝐵𝛿2

𝑥
𝑢𝑛+1 −𝐵𝛿2

𝑥
𝑢𝑛−1) = 1

4𝜏
(‖𝐵𝛿2

𝑥
𝑢𝑛+1‖2 − ‖𝐵𝛿2

𝑥
𝑢𝑛−1‖2), (3.12)

where Lemma 3.2 has been used.
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Similarly, using Lemma 3.4, we obtain

(𝛿2
𝑥
𝑢̂𝑛, 𝛿𝑡𝑢

𝑛) = 1
4𝜏

(𝛿2
𝑥
𝑢𝑛+1 + 𝛿2

𝑥
𝑢𝑛−1, 𝑢𝑛+1 − 𝑢𝑛−1) = − 1

4𝜏
(‖𝛿+

𝑥
𝑢𝑛+1‖2 − ‖𝛿+

𝑥
𝑢𝑛−1‖2), (3.13)

and

(𝛿2
𝑥̄
𝑢̂𝑛, 𝛿𝑡𝑢

𝑛) = 1
4𝜏

(𝛿2
𝑥̄
𝑢𝑛+1 + 𝛿2

𝑥̄
𝑢𝑛−1, 𝑢𝑛+1 − 𝑢𝑛−1) = − 1

4𝜏
(‖𝛿𝑥̄𝑢𝑛+1‖2 − ‖𝛿𝑥̄𝑢𝑛−1‖2). (3.14)

Substituting Eqs. (3.11)-(3.14) into (3.10), and combining (3.6) yields that

𝐸𝑛+1 =𝐸𝑛.

This proof is completed. □

4. Numerical analysis

In this section, we mainly study the boundedness and convergence of the numerical solution computed by the difference scheme (3.5)-(3.7).

4.1. Boundedness

To prove boundedness of numerical solution, we need to introduce the following important inequality.

Lemma 4.1 (Discrete Sobolev’s inequality). ([21]) For any discrete function 𝑢 ∈𝑈0
ℎ
, there exist two constants 𝑀1 and 𝑀2 such that

‖𝑢𝑛‖∞ ≤𝑀1‖𝛿+𝑥 𝑢𝑛‖+𝑀2‖𝑢𝑛‖.
Theorem 4.2. The solution of the difference scheme (3.5)-(3.7) is bounded, i.e.,

‖𝑢𝑛‖∞ ≤ 𝐶,
where 𝐶 is a positive constant independent of ℎ and 𝜏 .

Proof. Noticing that (3.7), 𝑢1 can be obtained by 𝑢0. It means that

𝐸0 = ‖𝛿+
𝑡
𝑢0‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑢1‖2 + ‖𝐵𝛿2

𝑥
𝑢0‖2) + 2

3
(‖𝛿+

𝑥
𝑢1‖2 + ‖𝛿+

𝑥
𝑢0‖2) − 1

6
(‖𝛿𝑥̄𝑢1‖2 + ‖𝛿𝑥̄𝑢0‖2) + arcsin(𝑟1 − 𝛿)

is only determined by 𝑢0 and 𝜓 due to 𝑟1 = sin
(
𝜏
(
2𝑏

(
𝑢0
)
𝑟0, 𝜓

)
+ arcsin

(
𝑟0 − 𝛿

))
+ 𝛿. Thus, there is a positive constant 𝑐0 such that 𝑐0 =𝐸0.

From Theorem 3.5, we obtain that

𝐸𝑛+1 = ‖𝛿+
𝑡
𝑢𝑛‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑢𝑛+1‖2 + ‖𝐵𝛿2

𝑥
𝑢𝑛‖2) + 2

3
(‖𝛿+

𝑥
𝑢𝑛+1‖2 + ‖𝛿+

𝑥
𝑢𝑛‖2) − 1

6
(‖𝛿𝑥̄𝑢𝑛+1‖2 + ‖𝛿𝑥̄𝑢𝑛‖2) + arcsin(𝑟𝑛+1 − 𝛿) = 𝑐0.

Applying Lemma 3.4, it follows from above equality that

‖𝛿+
𝑡
𝑢𝑛‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑢𝑛+1‖2 + ‖𝐵𝛿2

𝑥
𝑢𝑛‖2) + 1

2
(‖𝛿+

𝑥
𝑢𝑛+1‖2 + ‖𝛿+

𝑥
𝑢𝑛‖2) + arcsin(𝑟𝑛+1 − 𝛿) ≤ 𝑐0.

This together with

‖𝑢𝑛+1‖− ‖𝑢𝑛‖
𝜏

≤ ‖𝛿+
𝑡
𝑢𝑛‖,

and arcsin(𝑟𝑛+1 − 𝛿) ∈ [−𝜋∕2, 𝜋∕2], we have

‖𝑢𝑛+1‖− ‖𝑢𝑛‖
𝜏

≤ ‖𝛿+
𝑡
𝑢𝑛‖ ≤ 𝑐1, ‖𝛿+𝑥 𝑢𝑛‖ ≤ 2𝑐1,

where 𝑐1 =
√
𝑐0 +

𝜋

2 . It means that,

‖𝑢𝑛‖ ≤ 𝑛𝜏𝑐1 + ‖𝑢0‖ ≤ 𝑐1𝑇 + ‖𝑢0‖ ≜ 𝑐2.
Using Discrete Sobolev’s inequality in Lemma 4.1, one gets

‖𝑢𝑛‖∞ ≤ 𝐶,
where 𝐶 = 2𝑀1𝑐1 +𝑀2𝑐2 is a positive constant independent of ℎ and 𝜏 . This proof is completed. □

4.2. Convergence

Now, we focus on convergence of solution of the difference scheme (3.5)-(3.7). But before we do that, let’s introduce the following important 
inequality.
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Lemma 4.3 (Gronwall inequality). ([22]) Suppose that the discrete grid function {𝑤𝑛 ∣ 𝑛 = 0, 1, ⋯ , 𝑁 = 𝑇 ∕𝜏} satisfies the following inequality

𝑤𝑛 −𝑤𝑛−1 ≤𝐴𝜏𝑤𝑛 +𝐵𝜏𝑤𝑛−1 +𝐶𝑛𝜏,
where 𝐴, 𝐵 and 𝐶𝑛 are non-negative constants, then

max
1≤𝑛≤𝑁 |𝑤𝑛| ≤(

𝑤0 + 𝜏
𝑁∑
𝑘=1
𝐶𝑘

)
𝑒2(𝐴+𝐵)𝑇 ,

where 𝜏 is sufficiently small, such that (𝐴 +𝐵)𝜏 ≤ 𝑁−1
2𝑁 <

1
2 (𝑁 > 1).

Based on the above inequality, and denote 𝑒𝑛 =𝑈𝑛 − 𝑢𝑛, we can prove the following results.

Theorem 4.4. Assume that the solution of the problem (1.1)-(1.2) is smooth enough, then we have

‖𝑒1‖∞ ≤ (𝑐3𝑀1

√
2𝐿+ 𝑐3𝑀2

√
𝑇𝐿)(𝜏3 + ℎ4),

‖𝑒𝑛‖∞ ≤ (𝑀1

√
exp(4𝑐8𝑇 )(2𝑐23𝐿+ 𝑐24𝑇𝐿) +𝑀2

𝐿

√
6exp(4𝑐8𝑇 )(2𝑐23𝐿+ 𝑐24𝑇𝐿)

6
)(𝜏2 + ℎ4),

(4.1)

when 𝜏 < 𝜏0 ∶=
1
4𝑐8

, where 𝑐3, 𝑐4, 𝑐8 are all positive constants independent of ℎ and 𝜏 .

Proof. According to the derivation in Section 3.2, we can easily obtain the error system as follows

𝛿2
𝑡
𝑒𝑛 + 𝛾𝐻𝛿4

𝑥
𝑒𝑛 − 4

3
𝛿2
𝑥
𝑒𝑛 + 1

3
𝛿2
𝑥̄
𝑒𝑛 + 𝑏(𝑈𝑛)𝑅𝑛 − 𝑏(𝑢𝑛)𝑟𝑛 = 𝑞𝑛, (4.2)

𝛿+
𝑡
𝑒0 + 𝛾𝜏

2
𝐻𝛿4

𝑥
𝑒
1
2 − 2𝜏

3
𝛿2
𝑥
𝑒
1
2 + 𝜏

6
𝛿2
𝑥̄
𝑒
1
2 + 𝜏

2
(𝑈0)2𝑈

1
2 − 𝜏

2
(𝑢0)2𝑢

1
2 =𝑤, (4.3)

where 𝑞𝑛 = [𝑞𝑛1 , 𝑞
𝑛
2 , ⋯ , 𝑞𝑛

𝑀
]𝑇 , 𝑤 = [𝑤1, 𝑤2, ⋯ , 𝑤𝑀 ]𝑇 are the truncation errors. That is,

𝛿2
𝑡
𝑈𝑛 + 𝛾𝐻𝛿4

𝑥
𝑈̂𝑛 − 4

3
𝛿2
𝑥
𝑈̂𝑛 + 1

3
𝛿2
𝑥̄
𝑈̂ 𝑛 + 𝑏 (𝑈𝑛)𝑅𝑛 = 𝑞𝑛,

𝛿+
𝑡
𝑈0 + 𝛾𝜏

2
𝐻𝛿4

𝑥
𝑈

1
2 − 2𝜏

3
𝛿2
𝑥
𝑈

1
2 + 𝜏

6
𝛿2
𝑥̄
𝑈

1
2 + 𝜏

2
(
𝑈0)2𝑈 1

2 =𝑤,

thus there are two positive constants 𝑐3, 𝑐4 such that

|𝑤𝑖| ≤ 𝑐3(ℎ4 + 𝜏3), |𝑞𝑛𝑖 | ≤ 𝑐4(ℎ4 + 𝜏2), 1 ≤ 𝑖 ≤𝑀,1 ≤ 𝑛 ≤𝑁.
(I) Now we consider the convergence result when 𝑛 = 0. At first, from (1.2), we get ‖𝑒0‖ = 0. Taking the inner product (4.3) with 𝛿+

𝑡
𝑒0, we obtain

(𝛿+
𝑡
𝑒0, 𝛿+

𝑡
𝑒0) + 𝛾𝜏

2
(𝐻𝛿4

𝑥
𝑒
1
2 , 𝛿+

𝑡
𝑒0) − 2𝜏

3
(𝛿2
𝑥
𝑒
1
2 , 𝛿+

𝑡
𝑒0) + 𝜏

6
(𝛿2𝑜
𝑥
𝑒
1
2 , 𝛿+

𝑡
𝑒0) + 𝜏

2
((𝑈0)2𝑈

1
2 − (𝑢0)2𝑢

1
2 , 𝛿+

𝑡
𝑒0) = (𝑤,𝛿+

𝑡
𝑒0). (4.4)

Applying Lemma 3.2, we have

𝛾𝜏

2
(𝐻𝛿4

𝑥
𝑒
1
2 , 𝛿+

𝑡
𝑒0) = 𝛾

4
(𝐻𝛿4

𝑥
(𝑒1 + 𝑒0), 𝑒1 − 𝑒0) = 𝛾

4
(𝐵𝛿2

𝑥
𝑒1,𝐵𝛿2

𝑥
𝑒1) = 𝛾

4
‖𝐵𝛿2

𝑥
𝑒1‖2. (4.5)

Applying Lemma 3.4, we get

2
3
𝜏(𝛿2

𝑥
𝑒
1
2 , 𝛿+

𝑡
𝑒0) = 1

3
(𝛿2
𝑥
𝑒1 + 𝛿2

𝑥
𝑒0, 𝑒1 − 𝑒0) = −1

3
(‖𝛿+

𝑥
𝑒1‖2 − ‖𝛿+

𝑥
𝑒0‖2) = −1

3
‖𝛿+
𝑥
𝑒1‖2, (4.6)

and

𝜏

6
(𝛿2
𝑥̄
𝑒
1
2 , 𝛿+

𝑡
𝑒0) = 1

12
(𝛿2
𝑥̄
𝑒1 + 𝛿2

𝑥̄
𝑒0, 𝑒1 − 𝑒0) = − 1

12
(‖𝛿𝑥̄𝑒1‖2 − ‖𝛿𝑥̄𝑒0‖2) = − 1

12
‖𝛿𝑥̄𝑒1‖2. (4.7)

Inserting (4.5)-(4.7) into (4.4) yields that

‖𝛿+
𝑡
𝑒0‖2 + 𝛾

4
‖𝐵𝛿2

𝑥
𝑒1‖2 + 1

3
‖𝛿+
𝑥
𝑒1‖2 − 1

12
‖𝛿𝑥̄𝑒1‖2 + 1

4
‖𝑢0𝑒1‖2 = (𝑤,𝛿+

𝑡
𝑒0). (4.8)

Noticing that ‖𝛿+
𝑥
𝑒‖ ≤ ‖𝛿𝑥̄𝑒‖, thus we have

1
4
‖𝛿+
𝑥
𝑒1‖2 ≤ 1

3
‖𝛿+
𝑥
𝑒1‖2 − 1

12
‖𝛿𝑥̄𝑒1‖2.

This together with (4.8) gives that

‖𝛿+
𝑡
𝑒0‖2 + 𝛾

4
‖𝐵𝛿2

𝑥
𝑒1‖2 + 1

4
‖𝛿+
𝑥
𝑒1‖2 + 1

4
‖𝑢0𝑒1‖2 ≤ (𝑤,𝛿+

𝑡
𝑒0).

Since ‖𝑒1‖2
𝜏

≤ ‖𝛿+
𝑡
𝑒0‖2, (𝑤,𝛿+

𝑡
𝑒0) ≤ 1

2
(‖𝑤‖2 + ‖𝛿+

𝑡
𝑒0‖2).

Thus, we have
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1
2𝜏

‖𝑒1‖2 + 𝛾
4
‖𝐵𝛿2

𝑥
𝑒1‖2 + 1

4
‖𝛿+
𝑥
𝑒1‖2 + 1

4
‖𝑢0𝑒1‖2 ≤ 1

2
‖𝑤‖2.

It implies that

‖𝑒1‖2 ≤ 𝑐23𝜏𝐿(𝜏3 + ℎ4)2 ≤ 𝑐23𝑇𝐿(ℎ4 + 𝜏3)2,‖𝛿+𝑥 𝑒1‖2 ≤ 2𝑐23𝐿(ℎ
4 + 𝜏3)2.

Using Lemma 4.1, we have

‖𝑒1‖∞ ≤ (𝑐3𝑀1

√
2𝐿+ 𝑐3𝑀2

√
𝑇𝐿)(ℎ4 + 𝜏3). (4.9)

(II) Now we consider the convergence result when 𝑛 ≥ 1.

Taking the inner product with both sides of (4.2) with 𝛿𝑡𝑒𝑛, we obtain

(𝛿2
𝑡
𝑒𝑛, 𝛿𝑡𝑒

𝑛) + (𝛾𝐻𝛿4
𝑥
𝑒𝑛, 𝛿𝑡𝑒

𝑛) − 4
3
(𝛿2
𝑥
𝑒, 𝛿𝑡𝑒

𝑛) + 1
3
(𝛿2
𝑥̄
𝑒𝑛, 𝛿𝑡𝑒

𝑛) + (𝐺,𝛿𝑡𝑒𝑛) = (𝑞𝑛, 𝛿𝑡𝑒𝑛), (4.10)

where

𝐺 = 𝑏(𝑈𝑛)𝑅𝑛 − 𝑏(𝑢𝑛)𝑟𝑛.

Noticing that

(𝛿2
𝑡
𝑒𝑛, 𝛿𝑡𝑒

𝑛) = ( 𝑒
𝑛+1 − 2𝑒𝑛 + 𝑒𝑛−1

𝜏2
,
𝑒𝑛+1 − 𝑒𝑛−1

2𝜏
) = 1

2𝜏
(‖𝛿+

𝑡
𝑒𝑛‖2 − ‖𝛿+

𝑡
𝑒𝑛−1‖2). (4.11)

Applying Lemma 3.2, we have

(𝛾𝐻𝛿4
𝑥
𝑒𝑛, 𝛿𝑡𝑒

𝑛) = (𝛾𝐻𝛿4
𝑥
𝑒𝑛,
𝑒𝑛+1 − 𝑒𝑛−1

2𝜏
) = 𝛾

4𝜏
(‖𝐵𝛿2

𝑥
𝑒𝑛+1‖2 − ‖𝐵𝛿2

𝑥
𝑒𝑛−1‖2). (4.12)

Similarly, using Lemma 3.4, we get

4
3
(𝛿2
𝑥
𝑒𝑛, 𝛿𝑡𝑒

𝑛) = 4
3
(
𝛿2
𝑥
𝑒𝑛+1 + 𝛿2

𝑥
𝑒𝑛−1

2
,
𝑒𝑛+1 − 𝑒𝑛−1

2𝜏
) = − 1

3𝜏
(‖𝛿+

𝑥
𝑒𝑛+1‖2 − ‖𝛿+

𝑥
𝑒𝑛−1‖2), (4.13)

and

1
3
(𝛿2
𝑥̄
𝑒𝑛, 𝛿𝑡𝑒

𝑛) = 1
3
(
𝛿2
𝑥̄
𝑒𝑛+1 + 𝛿2

𝑥̄
𝑒𝑛−1

2
,
𝑒𝑛+1 − 𝑒𝑛−1

2𝜏
) = − 1

12𝜏
(‖𝛿𝑥̄𝑒𝑛+1‖2 − ‖𝛿𝑥̄𝑒𝑛−1‖2). (4.14)

For simplicity, denote

𝐴𝑛 = ‖𝛿+
𝑡
𝑒𝑛‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑒𝑛+1‖2 + ‖𝐵𝛿2

𝑥
𝑒𝑛‖2) + 2

3
(‖𝛿+

𝑥
𝑒𝑛+1‖2 + ‖𝛿+

𝑥
𝑒𝑛‖2) − 1

6
(‖𝛿𝑥̄𝑒𝑛+1‖2 + ‖𝛿𝑥̄𝑒𝑛‖2).

Substituting into (4.11)-(4.14) into (4.10), then we have

𝐴𝑛 −𝐴𝑛−1 = 2𝜏((𝑞𝑛, 𝛿𝑡𝑒𝑛) − (𝐺,𝛿𝑡𝑒𝑛)). (4.15)

Since

𝑓 (𝑈𝑛) − 𝑓 (𝑢𝑛) = 𝑓 ′(𝜉𝑛)(𝑈𝑛 − 𝑢𝑛) ≤ 𝑐5|𝑒𝑛|,
𝑟𝑛+1 = sin((𝑏(𝑢𝑛)𝑟𝑛, 𝑢𝑛+1 − 𝑢𝑛−1) + arcsin(𝑟𝑛 − 𝛿)) + 𝛿,

where 𝑐5 = max |𝑓 ′(𝜉𝑛)| and 𝜉𝑛 is on the segment that connects 𝑈𝑛 and 𝑢𝑛.
It means that when 𝛿 is large enough, we have

‖𝐺‖2 = ‖ 𝑅𝑛𝑓 (𝑈𝑛)
sin(∫Ω 1

2 (𝑈
𝑛)4𝑑𝑥) + 𝛿

− 𝑟𝑛𝑓 (𝑢𝑛)
sin(∫Ω 1

2 (𝑢
𝑛)4𝑑𝑥) + 𝛿

‖2
≤ 𝑐6‖𝑓 (𝑈𝑛) − 𝑓 (𝑢𝑛)‖2 ≤ 𝑐7‖𝑒𝑛‖2,

where 𝑐6 is a positive constant, 𝑐7 = 𝑐25𝑐6. Also, we have

‖ 𝑒𝑛+1 − 𝑒𝑛−1
2𝜏

‖2 ≤ 1
2
(‖𝛿+

𝑡
𝑒𝑛‖2 + ‖𝛿+

𝑡
𝑒𝑛−1‖2).

As a result, it follows from Lemma 3.3 that

(𝑞𝑛, 𝛿𝑡𝑒𝑛) − (𝐺,𝛿𝑡𝑒𝑛)

≤ ‖𝑞𝑛‖‖𝛿𝑡𝑒𝑛‖+ ‖𝐺‖‖𝛿𝑡𝑒𝑛‖
≤ 1

2
(‖𝑞𝑛‖2 + ‖𝐺‖2) + ‖𝛿𝑡𝑒𝑛‖2

≤ 1
2
‖𝑞𝑛‖2 + ‖𝛿𝑡𝑒𝑛‖2 + 𝑐3‖𝑒𝑛‖2

≤ 1
2
‖𝑞𝑛‖2 + 1

2
(‖𝛿+

𝑡
𝑒𝑛‖2 + ‖𝛿+

𝑡
𝑒𝑛−1‖2) + 𝑐3‖𝑒𝑛‖2

≤ 1
2
‖𝑞𝑛‖2 + 1

2
(‖𝛿+

𝑡
𝑒𝑛‖2 + ‖𝛿+

𝑡
𝑒𝑛−1‖2) + 𝑐3‖𝛿+𝑥 𝑒𝑛‖2. (4.16)

It means that
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𝐴𝑛 −𝐴𝑛−1 ≤ 𝜏‖𝑞𝑛‖2 + 𝜏(‖𝛿+
𝑡
𝑒𝑛‖2 + ‖𝛿+

𝑡
𝑒𝑛−1‖2) + 2𝑐3𝜏‖𝛿+𝑥 𝑒𝑛‖2.

Noticing that

𝐴𝑛 ≥ ‖𝛿+
𝑡
𝑒𝑛‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑒𝑛+1‖2 + ‖𝐵𝛿2

𝑥
𝑒𝑛‖2) + 1

2
(‖𝛿+

𝑥
𝑒𝑛+1‖2 + ‖𝛿+

𝑥
𝑒𝑛‖2),

where Lemma 3.4 has been used. Hence, we have

𝐴𝑛 −𝐴𝑛−1 ≤ 𝑐8𝜏𝐴𝑛 + 𝑐8𝜏𝐴𝑛−1 + 𝜏‖𝑞𝑛‖2, (4.17)

where 𝑐8 = max{1, 2𝑐7}, when 𝜏 ≤ 𝑁−1
4𝑐8𝑁

≤ 𝜏0 ∶= 1
4𝑐8

, using discrete Gronwall inequality, we obtain

𝐴𝑛 ≤ exp(4𝑐8𝑇 )(𝐴0 + 𝜏
𝑁∑
𝑛=1

‖𝑞𝑛‖2). (4.18)

According to (4.8), we have

1
2
‖‖‖𝛿+𝑡 𝑒0‖‖‖2 + 𝛾4 ‖‖‖𝐵𝛿2𝑥𝑒1‖‖‖2 + 1

4
‖‖‖𝛿+𝑥 𝑒1‖‖‖2 ≤ 1

2
‖𝑤‖2.

Noticing that 𝑒0 = 0, thus we have

𝐴0 = ‖𝛿+
𝑡
𝑒0‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑒1‖2 + ‖𝐵𝛿2

𝑥
𝑒0‖2) + 2

3
(‖𝛿+

𝑥
𝑒1‖2 + ‖𝛿+

𝑥
𝑒0‖2) − 1

6
(‖𝛿𝑥̄𝑒1‖2 + ‖𝛿𝑥̄𝑒0‖2)

≤ ‖𝛿+
𝑡
𝑒0‖2 + 𝛾

2
(‖𝐵𝛿2

𝑥
𝑒1‖2 + ‖𝐵𝛿2

𝑥
𝑒0‖2) + 2

3
(‖𝛿+

𝑥
𝑒1‖2 + ‖𝛿+

𝑥
𝑒0‖2)

≤ 2‖𝑤‖2.
Thus, we get

𝐴𝑛 ≤ exp(4𝑐8𝑇 )(𝐴0 + 𝜏
𝑁∑
𝑛=1

‖𝑞𝑛‖2) ≤ exp(4𝑐8𝑇 )(2‖𝑤‖2 + 𝜏 𝑁∑
𝑛=1

‖𝑞𝑛‖2)
≤ exp(4𝑐8𝑇 )(2𝑐23𝐿(ℎ

4 + 𝜏2)2 + 𝑐24𝑇𝐿(ℎ
4 + 𝜏2)2).

Consequently,

‖𝛿+
𝑥
𝑒𝑛‖ ≤√

exp(4𝑐8𝑇 )(2𝑐23𝐿+ 𝑐24𝑇𝐿)(ℎ
4 + 𝜏2). (4.19)

Applying Lemma 3.3 gives that

‖𝑒𝑛‖ ≤ 𝐿
√

6exp(4𝑐8𝑇 )(2𝑐23𝐿+ 𝑐24𝑇𝐿)

6
(ℎ4 + 𝜏2). (4.20)

Using Lemma 4.1 again, we have

‖𝑒𝑛‖∞ ≤ (𝑀1

√
exp(4𝑐8𝑇 )(2𝑐23𝐿+ 𝑐24𝑇𝐿) +𝑀2

𝐿

√
6exp(4𝑐8𝑇 )(2𝑐23𝐿+ 𝑐24𝑇𝐿)

6
)(ℎ4 + 𝜏2). (4.21)

This completes the proof. □

5. Numerical results

In this section, we use the linear difference scheme (3.5)-(3.7) to calculate some numerical examples to verify the theoretical results given in 
previous sections. Denote the errors in the discrete maximum norm as

𝐸(ℎ, 𝜏) = max
0≤𝑛≤𝑁 max

1≤𝑖≤𝑀−1
|𝑈𝑛
𝑖
− 𝑢𝑛

𝑖
|,

where 𝑈𝑛 and 𝑢𝑛 represent the exact solution (or the reference solution when the analytical solution is unknown) and numerical solution at time 𝑡𝑛
calculated by ℎ and 𝜏 , respectively. The convergence orders in space and time are defined by

Ord1 = log2(
𝐸(ℎ, 𝜏)
𝐸(ℎ, 𝜏∕2)

), Ord2 = log2(
𝐸(ℎ, 𝜏)
𝐸(ℎ∕2, 𝜏)

),

with respect to 𝜏 and ℎ small enough, respectively.

Example 5.1. We first consider the following non-homogeneous strain wave equation with exact solution:

𝑢𝑡𝑡 + 0.15Δ2𝑢−Δ𝑢+ 𝑢3 = 𝑔(𝑥, 𝑡), 𝑥 ∈Ω= [0,4],0 < 𝑡 ≤ 1,

𝑢(𝑥,0) = 𝜑(𝑥), 𝑢𝑡(𝑥,0) = 𝜓(𝑥), 𝑥 ∈ [0,4],

where 𝑔(𝑥, 𝑡) = (1 + 𝜋2 + 0.15𝜋4) sin(𝜋𝑥) exp(−𝑡) + sin3(𝜋𝑥) exp(−3𝑡) and with initial conditions 𝜑(𝑥) = −𝜓(𝑥) = sin(𝜋𝑥). The exact solution of systems is 
given by 𝑢(𝑥, 𝑡) = sin(𝜋𝑥) exp(−𝑡).
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Table 1

The maximum errors and convergence orders obtained by the scheme (3.5)-(3.7) in Ex-

ample 5.1.

𝜏 ℎ = 1∕200 cpu ℎ 𝜏 = 1∕6000 cpu

𝐸(ℎ, 𝜏) Ord1 𝐸(ℎ, 𝜏) Ord2

1∕5 2.6200e-2 — 2.6250 s 1∕4 2.9000e-3 — 0.7656 s

1∕10 7.3000e-3 1.8508 5.7813 s 1∕8 1.8271e-4 3.9798 8.8594 s

1∕20 1.9000e-3 1.9623 11.3438 s 1∕16 1.1448e-5 3.9964 16.9844 s

1∕40 4.7001e-4 1.9882 21.5313 s 1∕32 6.9621e-7 4.0394 75.5781 s

Table 2

The maximum errors and convergence orders obtained by Scheme I in Example 5.1.

𝜏 ℎ = 1∕200 cpu ℎ 𝜏 = 1∕6000 cpu

𝐸(ℎ, 𝜏) Ord1 𝐸(ℎ, 𝜏) Ord2

1∕5 2.6500e-2 — 0.5469 s 1∕4 1.2250e-1 — 0.5156 s

1∕10 7.3000e-3 1.8521 0.9219 s 1∕8 3.0100e-2 2.0269 1.0489 s

1∕20 1.9000e-3 1.9880 2.3125 s 1∕16 7.5000e-3 2.0069 1.5625 s

1∕40 4.3185e-4 2.0998 5.1406 s 1∕32 1.9000e-3 2.0017 31.6719 s

Table 3

The maximum errors and convergence orders in Example 5.2

with 𝑇 = 1.

𝜏 ℎ = 1∕256 ℎ 𝜏 = 1∕640

𝐸(ℎ, 𝜏) Ord1 𝐸(ℎ, 𝜏) Ord2

1∕10 8.8300e-2 — 1∕4 4.1000e-3 —

1∕20 2.3100e-3 1.9348 1∕8 3.0095e-4 3.7602

1∕40 5.9000e-3 1.9646 1∕16 1.9029e-5 3.9833

1∕80 1.6000e-3 1.9328 1∕32 1.2164e-6 3.9675

Table 4

𝐸𝑛 at 𝑡 = 𝑡𝑛 for Example 5.2.

𝑡 𝐸𝑛

1 8.06551757173246

10 8.06551757173288

100 8.06551757173353

1000 8.06551757173432

10000 8.06551757173229

In Table 1 and Table 2, by fixing ℎ and 𝜏 small enough respectively, we calculate the error and convergence order in space and time. From 
these data in Table 1, we clearly observe that the convergence order in the spatial direction is close to 4 while the convergence order in the time 
direction is close to 2, which is consistent with the previous theoretical analysis. Table 2 are calculated by using the linear scheme (denote Scheme 
I) constructed by T. Kadri [2]. By comparison, we can see that our algorithm is far superior to the Scheme I in accuracy and error perspective, and 
this phenomenon becomes more competitive as ℎ decreases. But Scheme I is superior to our algorithm in calculation speed because of one need to 
calculate one more linear equation caused by auxiliary variable. It is worth noting that since the source term 𝑔(𝑥, 𝑡) is not equal to zero, the above 
discrete conservation laws are no longer valid, so we do not verify them here.

Example 5.2. We consider the homogeneous strain wave equation as follows

𝑢𝑡𝑡 + 0.05Δ2𝑢−Δ𝑢+ 𝑢3 = 0, 𝑥 ∈Ω= [0,2],0 < 𝑡 ≤ 𝑇 ,
𝑢(𝑥,0) = sin(𝜋𝑥), 𝑢𝑡(𝑥,0) = −sin(𝜋𝑥), 𝑥 ∈ [0,2].

Since the analytical solution is unknown, in order to verify the errors and convergence orders, we choose the numerical solution calculated by 
ℎ = 1∕256 and 𝜏 = 1∕640 as the reference solution. In Table 3, some numerical results similar to Example 5.1 are listed, and some similar phenomenon 
can be observed. Which shows that our method is also effective in this case.

In Table 4, we list the value of discrete energy 𝐸𝑛 at time 𝑡 = 𝑡𝑛 obtained by taking 𝜏 = 1∕100 and ℎ = 1∕10. We can clearly see that the difference 
schemes (3.5)-(3.7) (TSAV) can well maintain discrete energy. Fig. 1 shows that the evolution of discrete energy 𝐸𝑛 of TSAV scheme and Scheme 
I obtained by taking ℎ = 1∕10 and 𝜏 = 1∕200 in a long time interval (𝑇 = 100). It can be observed that TSAV scheme and Scheme I are good for 
conserving energy, but the former has higher accuracy.
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Fig. 1. The evolution of discrete energy 𝐸𝑛 in a long time simulation.

6. Conclusion

In this paper, we proposed a high-order energy-preserving difference scheme for the initial boundary value problem of nonlinear fourth-order 
strain wave equation based on T-SAV approach. The proposed is proved to be linear, energy-preserving and convergent with (ℎ4 + 𝜏2) in maximum 
error norm. Numerical experiments verify the effectiveness and accuracy of the difference scheme.

Data availability

Data will be made available on request.
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